SOLUTION OF INTERNAL PROBLEMS OF
AERODYNAMICS UNDER TRANSITIONAL
CONDITIONS USING A MODEL KINETIC EQUATION

A, I.Ivanovskii and S. Kh. Rozenfel'd UDC 533.601.18

A method is developed based on the use of a model kinetic equation with a shock frequency
w=v/l { is the mean length of the free flight path; v is the modulus of the molecular veloc-
ity). The method is tested on several classical problems.

1. Description of Method. We shall use as basis the model kinetic equation
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Here v is the molecular velocity; 7 1(v) is the shock frequency, depending on the velocity; fois the
local-equilibrium distribution function. In the consideration of the internal flows of a rarefied gas, in the
majority of cases we can limit ourselves within the framework of a linear approximation (i.e., with small
Mach numbers and small temperature gradients).

Therefore, we take

fo (v, 1) = N (2rm8)~=exp (— —27’;%) <1 + pTu)

We divide all the particles into two sorts: primary particles which have just flown away from the wall
and have not undergone even one collision; secondary particles, which have undergone at least one collision,
We write the kinetic equations for each sort separately:
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Here fiand f; are respectively the distribution functions of the primary and secondary particles;
for and fy, are local-equilibrium functions normalized respectively for the densities of the number of pri-
mary and secondary particles.

The necessity for such a separation is a result of the following: with collisions between secondary
particles the momentum and the energy of any given element of the volume are retained; with collisions
between primary and secondary particles, in each element of the volume, there appears a momentum and
an energy brought in by the particle from that point of the surface from which it was emitted. Therefore,
at each point of its volume a gas consisting of secondary particles has sources of energy and momentum
formed by the flows of primary particles at the given point.

Let us make the form of the function 7 (v) definite. We take 7(v) = [/v. Here I is the mean length
of the free-flight path; v is the molecular velocity. (Various means for selecting 7 (v) are discussed in [1].}

We write the laws of conservation for the secondary particles:

Sdi’fzv = S dpfor = *VZ—;!—— Nyw, 1.3)
Sdpfzvv = Sdpfozvv = 3]8/;{ Nypou, vy = (‘%?‘)l/z (1.4
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With the given selection of 7 (v), Eqs. (1.2) can be rewritten as

Fr (v, £y -+ %) = fy (uv, r,) e (1.6)
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Here w =V/ vV, fo= fo + fos rgis the radius vector of a point on the surface; fs is the distribution function
of the particles flying away from the surface; we assume that this distribution is locally Maxwellian,

We now fix the point r = rg + s and substitute expression (1.7), consecutively into the equations of
conservation (1.3)-(1.5):
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Equations (1.8)-(1.10) express the density, the flows, and the pressure of the secondary particles in

terms of the total values of these quantities over the whole volume. We now find the contribution of the

primary particles. Integrating Eq. (1.6) over the space of the momenta at the point r=rg+ns, we find
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Here ug is the velocity of the wall; vyg = (20 S/m)i/ 2; 04 is the temperature of the wall.

The total density, ﬂows, and pressure are expressed by the formulas

N= Sd’ e —{No 22 uQ} g a5 — (W4 Zew) (1.14)
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The parameters Ng and Qg are determined from the condition of nonflow
Q (rs) n (l‘s) =0

The system of equations (1.14)-(1.17) is a closed system of integral equations, sufficient in principal:
for the solution of any given problem involving the flows of a rarefied gas.

Nt \dr {N w

“GnRT

We consider below a number of problems whose solutions are well known; we shall use these as ex-
amples to demonstrate the correctness and the very high efficiency of the method developed here.

2. Couette Flow, Let there be two infinite flat plates, moving parallel one to the other at velocities
of +ug. The distance between the plates is equal to 2a. There is sought the flow density of the particles
along the axis of the plates (Fig. 1).
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In this case also, the integral equation (1.15) for the flow can be transformed to the following form:
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Here s = z/a. The parameter A = a/! = Kn™' characterizes the degree of rarefaction. The integral
equation (2.1) was solved numerically over a wide range of values of A from 10~ 3to 5. Typical flow profiles
are shown in Fig. 1, where the values of A = 0,01, 0.1, 0.3, 0.5, 1.0, 3.0, 5.0, = correspond to curves 1-8.

The limiting cases can be investigated analytically. Thus, with A — 0, we have Q(s) = 0. With A — o,
we use the asymptotic formula

'+
lim j'lf(s)ds 5 eM[s=s'l — { f(s) n—{«-& '—Xil'__gz—/:'} (2.2)
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Applying (2.2) to Eq. (2.1), with A — =, we obtain 8?u/ds? = 0, with slipping conditions at the boundary:
3 Ou
wll) =us — 5l 5= @.3)

The solutions of Eq. (2.3) have linear profiles passing through the origin of coordinates, A compari-
son between conditions 2.3) and Fig. 1 shows that already at A =5 the solution of integral equation 2.1y
coincides with its continuous asymptofic curve.

The results set forth here are in good agreement with known data (see, for example, [2]).

‘3. Poiseuille Flow. We consider an isothermal flow,arising under the effect of a constant pressure
gradient applied along the X axis. In this case, Eq. (1.15) is transformed to the form

0*(9)-}" K(s,5) 0 (7)ds — X (e (4 ——f—e—”chm)—;—ﬁ-’;&f 2 (1= 2)erenns @D
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This integral equation was solved numerically from A = 1073 to A =5.0. Figure 2 shows characteris-
tic flow profiles for values of A = 0.01, 0.1, 0.5, 1.0, 3.0, 5.0 (curves 1-6, respectively). A comparison with
existing data [2] shows almost total agreement. With A — e, from Eq. (3.1) there can be obtained the well-
known Poiseuille equation

#u_ i P
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with slipping conditions at the boundary:
%Vn k 3 1 ou
u(l) = Vo5 7w (D (3.3)

Under these circumstances the viscosity coefficient is equal to

- vl
=Ty P (3.4)
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An important special characteristic of plane Poiseuille flow is the existence of a mininwim of the mass
flow rate at certain values of A (the Knudsen paradox). Figure 3 shows the mass flow rate curve obtained by
the present authors, At A —0 it has a logarithmic singularity, at A —« it rises linearly, and it attains a
minimum at A = 0.36-0.4. In [3] a value of A = 0,42-0.55 is given, Close values were obtained in recently
conducted experiments {4].

4. Heat Transfer between Flat Plates. We shall first calculate the temperature profile between infi-
nite flat plates, of which the upper has a temperature of 6, and the lower a temperature of 9., Integral
equation (1.16) is transformed to the form
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The results of a numerical calculation of 6 (s) are given in Fig, 4. Curves 1-10 correspond to the fol-
lowing pairs of values: A, 6 = 0.01, 0.5; 0.01, 1.0; 0.1, 0.5; 0.1, 1,0; 0,5, 0.5; 1.0, 0.5; 5.0, 0.5; 0.5, 1.0; 1.0,

1.0; 5.0, 1.0; 6 = (0 ,-6_.)/(Qr + Q).

The heat flux is expressed in terms of the temperature in the following manner:
+1
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At the free-molecular limit this expression goes over into

32__ l/2
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At the continuous limit the temperature profiles are linear with a temperature discontinuity at the
walls:

o(ty—a _ 4,
8(1) =8, — 5 1—(1). “.4)

At A — o, formula @.2) goes over into the thermal-conductivity equation with the thermal~conductivity
coefficient

kT:

TR @.5)

Disposing of explicit expressions for the viscosity and thermal-~conductivity coefficients, we can find

the Prandtl number
¢ph

Pr =
kq

OJ, ™~
.

This value coincides with the Prandtl number for the Boltzmann equation.

Thus, the proposed method ensures a correct limiting transition both to free-molecular and to con-
tinuous flows. At the same time, without imposing any sort of restrictions on the geometry of the region
and the dimensionality of the problem, it permits a very economical description of flows with arbitrary
Knudsen numbers.
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